Initial findings Prototyping a Landsat-8 Sentinel-2 Global Burned Area Product

David Roy, Jian Li, Hankui Zhang, Haiyan Huang, Adam Dosch, Sanath Kumar

Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA

Sentinel-2 Preliminary Experiences Session

Winter Landsat Science Team Meeting,
Newman Library Multipurpose Room,
Virginia Tech, Blacksburg, VA
January 12-14 2016

Prototyping a Landsat-8 Sentinel-2 Global Burned Area Product funded by NASA NNH14ZDA001N Land Cover/Land Use Change (LCLUC14-2): Multi-Source Land Imaging Science

- Develop and validate an automated Landsat 8 & Sentinel 2 burned area 30m mapping product building on experience of
 - MODIS burned area product generation
 - WELD product generation
- Research & development plan
 - integrate Sentinel 2 with Landsat 8 under WELD processing
 - apply algorithm for all Africa & select global samples
 - validate with Planet Labs imagery & ground based measurements

MODIS burned area product (MCD45) Central Southern Africa - 2 months of burning

Global WELD 30m Landsat 5 & 7 surface reflectance normalized BRDF adjusted reflectance composite

Global WELD NEX Version 3.0 Annual 2009 30m product from 141,098 L1T scenes (59,183 Landsat 5 & 81,915 Landsat 7)

Sinusoidal Equal Area Projection

Global WELD products nested to MODIS standard Level 3 products

Each MODIS tile has an area of approximately $1200 \times 1200 \text{ km}$ ($10^{\circ} \times 10^{\circ}$ at the equator)

Sinusoidal Equal Area Projection

Global WELD products nested to MODIS standard Level 3 products

Each MODIS tile has an area of approximately $1200 \times 1200 \text{ km}$ ($10^{\circ} \times 10^{\circ}$ at the equator)

Sinusoidal Equal Area Projection

Global WELD tiling scheme

- 7 x 7 global WELD tiles nested within each MODIS 10° x 10° tile
- each WELD tile 5295 x 5295
 30m pixels (158 x 158 km)
- Landsat 7 ETM+ & Landsat 5 TOA true color 30m reflectance composite

Human readable global WELD product filenames:

L57.Globe.month09.2009.hh31vv10.h2v1.doy248to273.v2.2.hdf

About

Welcome davidroy! Logout

Search

11 S2A scenes publically available prior to last week of November 2015

S2A OPER PRD MSIL1C PDMC 20150820T085706 R051 V20150815T110427 20150815T110427 https://scihub.esa.int/dhus/odata/v1/Products('e82b5e56-499b-4ac2-8d51-6a56a5c208c8')/\$value

Date: 2015-08-15T11:04:27.000Z, Instrument: MSI, Satellite: Sentinel-2, Size: 922.76 MB

S2A_OPER_PRD_MSIL1C_PDMC_20150818T101504_R080_V20150817T114433_20150817T114433 https://scihub.esa.int/dhus/odata/v1/Products('b2e58667-7104-4faf-b210-f0d7e9d1c9f0')/\$value

Date: 2015-08-17T11:44:33.000Z, Instrument: MSI, Satellite: Sentinel-2, Size: 739.70 MB

August 13th 2015

Pocking, Lower Bavaria

600 x 600 10m pixels

nearest neighbor resampled to WELD tile

August 13th 2015

Pocking, Lower Bavaria

200 x 200 30m pixels

nearest neighbor resampled to WELD tile

August 13th 2015

Pocking, Lower Bavaria

200 x 200 30m pixels

boxcar resampled to WELD tile

August 13th 2015

N.W. Austria

boxcar resampled to global WELD tile hh18vv04h6v1

August 9th 2015 (West)

August 11th 2015 (East)

N.W. Austria

nearest neighbor resampled to global WELD tile hh18vv04h6v1

August 9th 2015 (West)

August 11th 2015 (East)

N.W. Austria

nearest neighbor resampled to global WELD tile hh18vv04h6v1

August 9th 2015 (West)

Pocking, Lower Bavaria

500 x 500 30m pixels

nearest neighbor resampled to WELD tile (hh18vv04h6v1)

August 13th 2015

Pocking, Lower Bavaria

500 x 500 30m pixels

boxcar resampled to WELD tile (hh18vv04h6v1)

WELD sinusoidal projection 1.35km browse image

WELD sinusoidal projection 1.35km browse image

2015 WELD week 48 (November 26 to December 2 2015)

WELD sinusoidal projection 1.35km browse image

WELD sinusoidal projection 1.35km browse image

WELD sinusoidal projection 1.35km browse image

Note, no per-pixel temporal compositing applied, just a "splat" overwriting by later sensor acquisition date

WELD sinusoidal projection 1.35km browse image

Note, no per-pixel temporal compositing applied, just a "splat" overwriting by later sensor acquisition date

WELD sinusoidal projection 1.35km browse image

still holes in S2A

2015 WELD week 51 (December 17 to 23 2015)

Summary #1

- New moderate resolution data will provide global burned area mapping capability
 - Combined Landsat 8 / S2A / S2B will provide 3 day global coverage
 - Landsat 8 30m data have improved quantization and signal/noise characteristics
 - Sentinel-2 has Landsat-like bands also at 10m & 20m
- Developed Landsat 8 and S2A processing under global WELD
 - S2A reading and data handling
 - reprojection to common WELD projection and tiling
 - Landsat 8 30m nearest neighbor resampling
 - S2A 10m to 30m boxcar resampling
- Developed Landsat 8 prototype automated burned area 30m mapping algorithm
 - uses L8 surface reflectance, cloud mask, WELD gridded time series
 - developed a sensor ~agnostic burned area algorithm with good qualitative initial results
- Future research & development
 - Continue to integrate Sentinel 2 with Landsat 8 under WELD processing
 - apply burned area algorithm for all Africa & select global samples
 - validate with Planet Labs imagery (burned area, f) & Canopy Biomass Lidar (cc)

Cape Town, South Africa

WELD week 49 (December 3 - 9 2015)

2 input L1T images sensed:

December 8

08:35:04

08:35:28

nearest neighbor resampled to global WELD tile hh19vv12h3v2

Cape Town, South Africa

WELD week 49 (December 3 - 9 2015)

1 input L1C image sensed:
December 8
08:50:36

box car resampled to global WELD tile hh19vv12h3v2

Koeberg Nuclear Power Station & Nature Reserve, north of Cape Town

WELD week 49 (December 3 - 9 2015)

2 input L1T images sensed: December 8 08:35:04

08:35:28

nearest neighbor resampled to global WELD tile hh19vv12h3v2

Koeberg Nuclear Power Station & Nature Reserve, north of Cape Town

WELD week 49 (December 3 - 9 2015)

1 input L1C image sensed:
December 8
08:50:36

box car resampled to global WELD tile hh19vv12h3v2

Koeberg Nuclear Power Station & Nature Reserve, north of Cape Town

WELD week 49 (December 3 - 9 2015)

2 input L1T images sensed: December 8 08:35:04

08:35:28

nearest neighbor resampled to global WELD tile hh19vv12h3v2

Evident misregistration

Koeberg Nuclear Power Station & Nature Reserve, north of Cape Town

WELD week 49 (December 3 - 9 2015)

1 input L1C image sensed: December 8 08:50:36

box car resampled to global WELD tile hh19vv12h3v2

Evident misregistration

Summary #2

ESA Sentinels Scientific Data Hub

- Simple and intuitive
- Supports scripting via a web service
- Filenames include sensor and processing date/time
- Unclear how versioning / reprocessing will be handled

S2A data

- Holes in L1C products will be an issue for users (not a problem for WELD code, but not cool looking)
- Cloud and saturation masks missing and appear to be stored as vector files and not as rasters (?)

Geolocation

- Evident misregistration beween Landsat 8 and S2A
 - Know that Landsat 8 is well registered to GLS baseline
 - Don't know if (a) S2A is well registered to S2A global ref. image baseline, (b) GLS is well registered to S2A baseline
 - Need guidance on future improvements of Landsat 8 GLS & ESA global ref. image baselines
- Working on misregistration analysis between S2A and Landsat 8 defined in the global WELD projection

S2A atmospheric correction

- Need informed guidance on which ESA atmospheric correction toolkit to use
- Inter-comparison between ESA-recommended and Landsat 8 atmospheric correction suggested
- Ideally should have the same L8 and S2A atmospheric characterization and RT solution

Global Version 3.0 WELD processing sequence

Will work to generate

- similar but separate L8 and S2 30m gridded products (prototyped)
- combined L8-52 gridded 30m products (requires more R&D, see NASA)

(UTM projection)

Nearest Neighbor

$$r(x) = \begin{cases} 1 & for / x / = \frac{1}{2} \\ 0 & otherwise \end{cases}$$

Bilinear

$$r(x) = \begin{cases} 1 - \frac{x}{for} & x = 1 \\ 0 & otherwise \end{cases}$$

Cubic convolution

$$r(x) = r_{0}(x) + \alpha \ r_{1}(x) \qquad \alpha \approx -0.5$$

$$r_{0}(x) = \begin{cases} (2/x/+1)(/x/-1)^{2} \ for/x/<1 \\ 0 \ otherwise \end{cases}$$

$$r_{1}(x) = \begin{cases} /x/^{2}(/x/-1) \ for/x/<1 \\ (/x/-1)(/x/-2)^{2} \ for \ 1 \le x \le 2 \\ 0 \ otherwise \end{cases}$$

(Sinusoidal

projection)